If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-7144.4h+921600=0
a = 1; b = -7144.4; c = +921600;
Δ = b2-4ac
Δ = -7144.42-4·1·921600
Δ = 47356051.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7144.4)-\sqrt{47356051.36}}{2*1}=\frac{7144.4-\sqrt{47356051.36}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7144.4)+\sqrt{47356051.36}}{2*1}=\frac{7144.4+\sqrt{47356051.36}}{2} $
| -3x-4=12+24 | | -4-3-9=-12+6x10 | | 3^(x-1)=28 | | 3x+18=4x-22 | | 5x+34=2(3x-7) | | 8(6x+2)=(x-2) | | X+15°+2x+15°=180° | | -30*d+5*d^2+214=234 | | 4(2x)=60-12 | | 3e/5=11 | | |3x+27|=6x | | X=0.636y-10.18 | | 6y+4=48 | | 4x+6=2.5×(x+6) | | x^-8x+9=0 | | 8=34-4x | | 4x+1=3x+9.5 | | 4+3x=9+2x | | 3(u−4)=15 | | 3n+1/4-5=2 | | 10(h+9)=260 | | 7(e+6)=63 | | 3(4x-11)=-9 | | 6^x=77 | | 20=x+(2+8)-6 | | (n+1)n=110 | | t/3=-6 | | X.2(x+3)=8-3(x-4) | | X.2(x+3)=8-3(x-4 | | 300=300-6x | | 2x+5+4x+15=180 | | nXn²=343 |